A Pseudospectral Method for Time-Domain Computation of Electromagnetic Scattering by Bodies of Revolution
نویسندگان
چکیده
We present a multi-domain pseudospectral method for the accurate and efficient time-domain computation of scattering by body-of-revolution (BOR) perfectly electrically conducting objects. In the BOR formulation of the Maxwell equations the azimuthal dependence of the fields is accounted for analytically through a Fourier series. The numerical scheme in the (r, z)-plane is developed in general curvilinear coordinates and the method of characteristics is applied for patching field values in the individual subdomains to obtain the global solution. A modified matched layer method is used for terminating the computational domain and special attention is given to proper treatment of the coordinate singularity in the scattered field formulation and correct time-domain boundary conditions along edges. Numerical results for monochromatic plane wave scattering by smooth and non-smooth axis-symmetric objects, including spheres, cone-spheres and finite cylinders, is compared with results from the literature, illustrating the superior accuracy and computational efficiency associated with the use of properly constructed spectral methods. To emphasize the versatility of the presented framework, we compute plane wave scattering by a missile and find satisfactory agreement with Method-of-Moment computations. Keywords— Time-Domain Scattering, Pseudospectral Multi-Domain Methods, Body-of-Revolution Scattering, Bistatic Radar Cross Section.
منابع مشابه
Performance of SST k-ω Turbulence Model for Computation of Viscous Drag of Axisymmetric Underwater Bodies
This paper presents 2-D finite volume method for computation of viscous drag based on Reynolds-averaged Navier-Stokes (RANS) equations. Computations are performed on bare submarine hull DREA and six axisymmetric bodies of revolution with a number of length-diameter (L/D) ratios ranging from 4 to 10. Both structured and unstructured grids are used to discretize the domain around the bodies. Diff...
متن کاملA Study of Electromagnetic Radiation from Monopole Antennas on Spherical-Lossy Earth Using the Finite-Difference Time-Domain Method
Radiation from monopole antennas on spherical-lossy earth is analyzed by the finitedifference time-domain (FDTD) method in spherical coordinates. A novel generalized perfectly matched layer (PML) has been developed for the truncation of the lossy soil. For having an accurate modeling with less memory requirements, an efficient "non-uniform" mesh generation scheme is used. Also in each time step...
متن کاملPhysical Optics Calculation of Electromagnetic Scattering From Haack Series Nose Cone
In this paper, the physical optics method is used to study the problem of electromagnetic scattering from Haack series nose cone. First, a meshing scheme is introduced which approximates the curvature of the surface by piecewise linear functions in both axial and rotational directions. This results in planar quadrilateral patches and enables efficient determination of the illuminated region and...
متن کاملAn Algorithm for Modeling and Interpretation of Seismoelectric Data
Generally speaking, seismoelectric modeling is a prospecting method based on seismic and electromagnetic waves, in which waves generated by a seismic source at the boundary of the two environments generate a relative fluid-solid motion formed as a result of antagonism between the elastic properties of the environment with the saturated fluid. This research has as its objective, a study of the e...
متن کاملCalculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms
The helicopter-borne electromagnetic (HEM) frequency-domain exploration method is an airborne electromagnetic (AEM) technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007